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Abstract 

When a call for a service is received by an Emergency Medical Services (EMS) provider, a decision must 
be made on which vehicle to send to provide assistance. The dispatched vehicle becomes busy and the 
system’s preparedness to attend a new call decreases. Therefore, to increase this value, idle EMS vehicles 
could be relocated among the standby sites.  This study aims to evaluate the effect on the critical 
performance measures of the system, the sequential application of a dispatching mathematical model and a 
relocation model, taking into account the operational requirements of an EMS provider in Colombia.  

Four scenarios were simulated during a period of maximum activity to evaluate the dynamic state of the 
system given by the dispatch and relocation decisions. Dispatch decisions should follow the most common 
rule -dispatch the nearest vehicle- or the optimal solution of a dispatching model. Relocation options were 
either doing nothing and following the optimal solution of a mathematical relocation model. Both models 
consider the fleet and the services heterogeneous, and look for to improve the system’s preparedness level. 
The simulated system showed improvements in response times and preparedness levels of up to 54% when 
the dispatch follows the solution of the mathematical model and no relocation occurs. 
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1 Introduction 

Quality of care is the degree to which health services for individuals and populations increase the likelihood of desired 
health outcomes, and are consistent with current professional knowledge (Sanders, 2002). Emergency Medical 
Services (EMS) are part of these services. The dispatch and relocation of the ambulance -when appropriate-, in a given 
area of coverage are two of the key elements to reduce the waiting time of a potential patient and the initiation a health 
care service. During the operation of an EMS provider, frequent decisions about which vehicle to send to respond to 
a service call are taken. The dispatched vehicle becomes busy and the system’s preparedness for a new call decreases. 
An action to restore the system's service level might be to relocate some of the idle EMS vehicles waiting at their 
standby sites.  The impact of these decisions is directly received by the patient, which may affect their chances of 
survival (McLay & Mayorga, 2010); (Pons, et al., 2005)). From the patient’s point of view, response times are by far 
the most important performance measure for an EMS provider, and it is one of the measures most studied in the 
literature ( (Nogueira, Pinto, & Silva, 2016), (Wei Lam, et al., 2014), (Pons, et al., 2005)).  However, different 
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performance measures have recently been studied, such as the system preparedness concept (Andersson & Värbrand, 
2007).   
 
When a call is received, a vehicle dispatching decision must be made; even while the call is in progress. The default 
approach is to identify the nearest vehicle to the position where the call originates, with the objective of responding to 
the specific customer (patient) in the minimum time. In addition, idle vehicles are usually waiting at their 
predetermined standby sites and do not move unless necessary to respond a call. However, this decision rule is not 
necessarily the best for overall performance ( (Schmid, 2012); (Zhen, Whang, Hu, & Chang, 2014)). In this paper, the 
hypothesis is that the use of a decision system that includes the sequential application of a dispatching mathematical 
model and a relocation model significantly improves the measures of performance of the system, such as preparedness 
level and response times.  
 
2 Methods 
 
2.1 Study Design and Setting 
A simulation of four scenarios was performed. The trigger event that changes the system state is a call requesting 
service. Historical call data was provided in a peak period of an EMS provider in Colombia. The two dispatching 
options considered were: 1) the default rule: dispatching the vehicle nearest to the customer's request for assistance 
and 2) following the dispatch decision indicated when solving a dispatching mathematical model. With regard to 
relocation decisions, the options were: 1) do nothing, that is, not relocate idle vehicles in their current standby sites 
and 2) to follow the optimal relocation decision obtained by solving a mathematical model of relocation, which 
includes the option of "not relocate idle vehicles". Table 1 summarizes these options.  
 
The two mathematical models selected have been constructed taking into account the specific conditions of the EMS 
provider. Both models aim to improve the system preparedness level and both are deterministic, so only one replication 
is taken. Details of the mathematical models can be found in ... Historical data consist of the arrival times of the calls 
requesting service. The run with the rules "dispatch the nearest vehicle" and "do nothing" corresponds to the current 
baseline. 
 

Table 1.  Design table 
Decision rule Value Meaning 

Dispatching rule -1 Default: assign the nearest vehicle 
1 Mathematical model’s decision 

Relocation rule -1 Default: do not relocate 
1 Mathematical model’s decision 

 
 
2.2 Study Protocol 
Before describing the simulation process, Figure 1 shows the map of the processes that an EMS provider follows to 
service a call requesting. 
Process Map 
In order to contextualize operative decisions related to the fleet of an EMS provider, a process map is presented in 
Figure 1. When a call enters to the system, the operator triages it, determines the need to send a vehicle, and if 
necessary, gives basic indications to the patient (Schmidt, et al., 2000). The decision to choose and send a vehicle to 
assist the patient is called dispatch.  When the vehicle reaches its destination, the service begins and can end either at 
the patient's site or after the patient is transferred to an emergency center. In the latter case, another decision must be 
made: the selection of the medical center where to take the patient. Other studies have discussed this problem (Pham, 
Patel, Millin, Kirsch, & Chanmugan, 2006). The context of our experiment does not require this aspect, since the 
facilities are predetermined. When a vehicle is dispatched, it becomes busy and this event changes the system 
preparedness (e.g. the system has one vehicle less available to service a new call). Then, a new decision has to be 
made on idle and available vehicles: that is, if they should be relocated, and where to. Finally, when the service is 
finished, a newly idle vehicle is available again and the system status changes again.  
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Figure 1. Process map of an EMS provider’s operation 

 
Simulation Process 
Figure 2 depicts the protocol followed. The system status is initialized with parameters that define travel times, 
availability and location of the vehicle, allowed standby sites where vehicles wait for a service call, system 
preparedness, among others. Running time is set to zero. The scheduling and location of incoming calls are given, 
taken from an EMS provider's true historical data. So when the first call arrives, the system’s status is updated as well 
as the runtime. This information is entered into a dispatch decision module. Outcomes of this process are: vehicle 
assigned (i.e. a newly busy one) and new preparedness values. Immediately after, the relocation decision module is 
used to decide if idle waiting vehicles are relocated among the possible standby sites, to restore preparedness values. 
Again, system parameters updating is carried out.  If a new call enters the system before the last updating, it enters the 
queue of the dispatching module; otherwise it enters at the first system updating module.  
 
The System Studied 
The different types of services were classified according to their priority, in cases of emergency, urgency and 
consultation. A heterogeneous fleet (vehicles with different service assistance capabilities) was also identified. 
Statistical analysis was performed for three quality measures, for the whole system and specifically for the most critical 
calls (i.e. urgency), since no emergency calls were received during the period studied. 
 
The system consists of a heterogeneous fleet of an EMS provider, with size | K |, a set of waiting sites I, in which a 
vehicle is allowed to wait for a service call, with | K | <| I |. The heterogeneous services are to be covered in a region 
divided into zones j ∈ J, where 𝑄𝑄𝑘𝑘 ⊆ 𝑆𝑆 is the set of services that are covered by vehicle k, and 𝐷𝐷𝑗𝑗𝑗𝑗 is the historical 
weighted demand for service s of zone J. A vehicle is available when idling at a waiting site or moving to a known 
waiting site. 
 
 

 
Figure 2. Simulation scheme 

© IEOM Society International 
559



Proceedings of the International Conference on Industrial Engineering and Operations Management 
Bogota, Colombia, October 25-26, 2017 

 
Optimization Models 
Taking into account the limitations imposed by the operation of the EMS provider under study, vehicle dispatching is 
a particular case of the Vehicle Routing with Multiple Deposits and Time Windows problem. It was formulated using 
the Mixed Integer Linear Programming (MILP) model proposed in (Rengifo, Baldoquin, & Escobar, 2012). The 
relocation problem is also modeled as an MIP that considers moving idle vehicles between waiting sites to improve 
the minimum system preparedness per service type (or priority), subject to capacity, travel times and demand 
constraints as in (Herrera and Mosquera, 2016). Both optimization models 1) have a dynamic character, that is, they 
are deterministically solved, modifying the parameters and input data whenever there is a change in the state of the 
system, such as reception of a new call, failure of a vehicle, etc. 2) were developed in accordance with the EMS 
provider restrictions, and 3) optimize a customized system’s preparedness measure. 
 
Outcome Measures 
At the end of each run the following indicators were calculated: 1) response time, defined as the length of the time 
interval between the start of a call and a vehicle arrival at the destination (i.e. the patient's location). 2) The occupation 
of the fleet, which measures the percentage of time the vehicles are occupied, either by answering a call or changing 
location; and 3) Preparedness level, general and per service. The preparedness level used in this work estimates the 
preparation of the system to respond to new calls. This extends the concept found in the literature (Andersson and 
Värbrand, 2007), (Zhen, Whang, Hu & Chang, 2014) to a preparation by type of service (or priority) as defined in 
equation (1), where 𝛽𝛽𝑗𝑗𝑗𝑗 is the weighted demand for the service s of zone j, 𝛼𝛼𝑖𝑖𝑗𝑗  is a parameter that weighs travel times 
from a standby site i to a demand zone j, which considers the proximity of the site i to zone j with respect to the other 
standby sites. 𝑦𝑦𝑖𝑖𝑗𝑗 can be defined as either the number of vehicles covering the service s at site i or as a binary variable 
indicating whether site i is covered with service s by some vehicle. In this work it is declared as binary. 

 
2.3 Run setting  
To test the effect of dispatch and relocation decisions, we use the busiest hour of a working day from a private EMS 
provider in Colombia. During this period 21 calls were received, for which 21 runs were used as input to the model. 
The models were programmed on the AMPL ide® interface and solved with Gurobi 3.0®, using an HP Envy 4 
Notebook, RAM: 4GB, an Intel® Core ™ i3-3217U processor and a 1.80GHz CPU. 
 
The procedure for calculating the travel times between centroids of demand zones j and standby site locations i takes 
into account (Herrera & Mosquera, 2016): 1) the Cartesian coordinates of the different standby site i locations and the 
21 points where the calls originate; 2) an experimental design, using distances given by the Google Maps ® tool, to 
estimate an adjustment factor when comparing these distances with the Euclidian ones for each pair of points; and 3) 
weighting factors for the calculation of speeds, considering peak and off periods, as well as type of service (i.e. speed 
to attend an emergency call may be different from urgency or consultation).  
 
Travel speeds and standard times were considered, according the priority, as shown in table 2. Table 2 also shows the 
fleet size per ambulance type; an “X” indicates whether the vehicle can serve a specific service. The demand was 
weighted taking into account the number of calls received in the last year per zone and service.  
 

Table 2. Input parameters 

Service 
Speed in peak 

hours  
[km/min] 

Standard 
response 

time [min] 

EMS Vehicles 

I II III 

1 Consultation 0.77 120 X   
2 Urgency 0.77 30 X X  
3 Emergency 1.33 15 X X X 
Fleet size 7 3 2 

 

                                  𝑃𝑃𝑗𝑗𝑗𝑗 =  
1
𝛽𝛽𝑗𝑗𝑗𝑗

� 𝛼𝛼𝑖𝑖𝑗𝑗
𝑖𝑖 ∈ 𝐼𝐼

⋅ 𝑦𝑦𝑖𝑖𝑗𝑗    ∀𝑗𝑗 ∈ 𝐽𝐽, 𝑠𝑠 ∈ 𝑆𝑆                                                (1) 
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3 Results 
 
After taking a random sample of 30 distances between centroids, an adjustment factor of 0.48 km with SD 0.26 was 
found. This value was used to correct the Euclidian distance between each pair of points.    
 
Five performance indicators were analyzed, for the four possible combinations of the dispatch and relocation rules, 
according to Table 2. The indicators are: 1) RT: average response time, in seconds; 2) FO: occupation of the fleet (%) 
and 3) PL: Preparedness level. Since no emergency call was received during the study period, attention was paid to 
the most critical service: urgency.  Therefore, the other two variables are:  4) PLu: Preparedness level for urgency 
services and 5) RTu: response time for urgency calls, in seconds. Table 3 shows the results obtained. Columns 1 and 
2 show the corresponding dispatching and relocation rules according to Table 2. Thus, for example, the first row refers 
to the nearest vehicle dispatch rule without subsequently applying a relocation of idle vehicles. For each combination, 
average and standard deviation values are given. The last row in Table 3 shows the relative change when using the 
third scenario with respect the first (default) scenario. 

 
Table 3.  Results of the performance indicators analyzed 

D R  y1: RT���� y2: FO���� 𝑦𝑦3: PL���� 𝑦𝑦4: PLu����� 𝑦𝑦5: RTu������ 
[s] [] [] [] [s] 

-1 -1 Ave 
SD 

1,154.7 
1,465 

59% 
19% 

0.432 
0.348 

0.4197 
1.844 

423.7 
105.0 

-1 1 Ave 
SD 

1,174.8 
1,426 

59% 
19% 

0.468 
0.322 

0.4162 
1.298 

962.3 
285.5 

1 -1 Ave 
SD 

526.9 
489.8 

44% 
44% 

0.665 
0.297 

0.6008 
0.279 

233.7 
66.9 

1 1 Ave 
SD 

897.7 
923.5 

49% 
34% 

0.592 
0.265 

0.4362 
0.319 

742.0 
332.3 

Change* Ave 
SD 

-54.4% 
-66.6% 

-25.4% 
131.6% 

53.9% 
-14.7% 

43.1% 
-84.9% 

-44.8% 
-36.3% 

 
D: Dispatching rule, R: Relocation rule, Ave: Average, SD: Standard Deviation, RT: Response time, FO: fleet 
occupancy percentage, PL: preparedness level, PLu: preparedness for urgency calls. RTu: response times for urgency 
calls. * Relative changes of row 3 with respect to row 1. 
 
After applying the ANOVA technique, Table 4 shows the p_values of the partial test of each factor when the solution 
of both optimization models are used. P_values below the significance level α=0.05 are considered to be statistically 
significant. Table 5 also shows the corresponding adjusted coefficient of determination 𝑅𝑅𝑎𝑎2. 
 

Table 4. ANOVA results 

Test: Decision rule  Response variables 
y1: RT y2: FO 𝑦𝑦3: PL 𝑦𝑦4: PLu 𝑦𝑦5: RTu 

Partial: Dispatching P_value 0.236 0.138 0.189 0.059 0.010 
Partial: Relocation P_value 0.466 0.530 0.792 0.870 0.004 
Total: Both  𝑅𝑅𝑎𝑎2 66.3% 86.7% 76.6% 97.5% 99.9% 

 
4 Discussion 
 
Recalling that the period analysed was the busiest one of the year, Table 4 shows that the best scenario for all 
performance measures is the third one, which consists of dispatching an ambulance according the optimal solution 
indicated by the mathematical model without relocating idle ambulances afterwards. This makes sense in a peak 
activity period where most of the ambulances are busy and the time between call arrivals may be small enough to not 
allow idle vehicles to change their positions.  This makes sense in a period of maximum activity where most 
ambulances are busy and the time between call arrivals may be so small that they do not allow inactive vehicles to 
change their positions. 
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Improvements on response times and preparedness levels reached 54%, by comparing this scenario with the default 
scenario (i.e. the nearest dispatching rule without relocation). Reductions on the standard deviation of these variables 
were obtained, with a greater reduction (85%) on the standard deviation of the preparedness level for urgency calls.   
On other hand, fleet occupancy was also improved (25% reduction) but the increase in the standard deviation reflects 
low balance of workload. 
 
The first thing to be observed from the ANOVA results is that the decisions of dispatch have greater influence in the 
performance measures than the ones of relocation.  Both types of decisions can explain 66.3% of response time 
variation and 76.6% of preparedness levels, and have an even more impact in the fleet occupancy (86.7%).  It should 
be noted that the two main quality performance measures (i.e. response times and preparedness level) for the more 
critical cases, -the urgency calls-, are much more sensible to both dispatching and relocation decisions. The variability 
of preparedness level for urgency calls, can be estimated with a  𝑅𝑅𝑎𝑎2= 0.987, and the response times with a  𝑅𝑅𝑎𝑎2= 0.999, 
which are very high values. In contrast, response times are only explained 66.3% with both factors. This value makes 
sense, since both decisions are taken at the beginning of the EMS vehicle’s travel, and the response time also greatly 
depends on the distance to the destination.   
 
4.1 Limitations 
Only four complete runs were simulated in the same horizon, which was the most congested one in observed the 
period. Taking more replicates makes no sense, since the models are deterministic. The results shown here are only 
valid to the EMS provider under study, and for the two mathematical models used, which were taken from the literature 
and they were adapted to the operating conditions of that EMS provider. However, general conclusions are a call for 
EMS provider companies to consider the use of operations research models to improve their quality performance. 
During the simulation, the probability of vehicle breaking or maintenance was not included.  During the selected 
horizon, no emergency calls were received. 
 
5 Conclusions 
 
The performance measures of the most critical calls -the urgency ones-, were found to be significantly affected by 
both, the dispatching and relocation methods. In particular, the preparedness of the system and the response times for 
to handle urgency calls were the most sensitive performance measures. The scenario that reports a better performance 
for a period of peak activity of the EMS provider under study was to dispatch an ambulance according the optimal 
solution indicated by the mathematical model without relocating idle vehicles, because the times between call arrivals 
are very short. Then, an EMS provider should consider alternatives to the most common rule of assigning the vehicle 
closest to a call. It will be necessary to study other scenarios, with less demand, to verify if the use of the mathematical 
model to relocate can influence favorably the average times of response and the preparation of the system. It was 
found that the use of optimization models, such as those used in this work to dispatch and relocate EMS vehicles, can 
improve not only the average response time but also the system preparedness to handle new calls, especially when 
major services are requested priority. 
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